Traumatic Brain Injury by a Closed Head Injury Device Induces Cerebral Blood Flow Changes and Microhemorrhages

Srinivasu Kallakuri, Sharath Bandaru, Nisrine Zakaria, Yimin Shen, Zhifeng Kou, Liying Zhang, Ewart Haacke, John Cavanaugh

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Objectives: Traumatic brain injury is a poly-pathology characterized by changes in the cerebral blood flow, inflammation, diffuse axonal, cellular, and vascular injuries. However, studies related to understanding the temporal changes in the cerebral blood flow following traumatic brain injury extending to sub-acute periods are limited. In addition, knowledge related to microhemorrhages, such as their detection, localization, and temporal progression, is important in the evaluation of traumatic brain injury. Materials and Methods: Cerebral blood flow changes and microhemorrhages in male Sprague Dawley rats at 4 h, 24 h, 3 days, and 7 days were assessed following a closed head injury induced by the Marmarou impact acceleration device (2 m height, 450 g brass weight). Cerebral blood flow was measured by arterial spin labeling. Microhemorrhages were assessed by susceptibility-weighted imaging and Prussian blue histology. Results: Traumatic brain injury rats showed reduced regional and global cerebral blood flow at 4 h and 7 days post-injury. Injured rats showed hemorrhagic lesions in the cortex, corpus callosum, hippocampus, and brainstem in susceptibility-weighted imaging. Injured rats also showed Prussian blue reaction products in both the white and gray matter regions up to 7 days after the injury. These lesions were observed in various areas of the cortex, corpus callosum, hippocampus, thalamus, and midbrain. Conclusions: These results suggest that changes in cerebral blood flow and hemorrhagic lesions can persist for sub-acute periods after the initial traumatic insult in an animal model. In addition, microhemorrhages otherwise not seen by susceptibility-weighted imaging are present in diverse regions of the brain. The combination of altered cerebral blood flow and microhemorrhages can potentially be a source of secondary injury changes following traumatic brain injury and may need to be taken into consideration in the long-term care of these cases.

Original languageEnglish (US)
Article number52
JournalJournal of Clinical Imaging Science
Volume5
Issue number1
DOIs
StatePublished - Jan 1 2015
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Radiology Nuclear Medicine and imaging

Keywords

  • Arterial spin labeling
  • cerebral blood flow
  • hemorrhages
  • marmarou model
  • Prussian blue
  • susceptibility-weighted imaging
  • traumatic brain injury

Fingerprint

Dive into the research topics of 'Traumatic Brain Injury by a Closed Head Injury Device Induces Cerebral Blood Flow Changes and Microhemorrhages'. Together they form a unique fingerprint.

Cite this