Abstract
The degenerate two-photon absorption (2PA) spectra of several fluorene-based photosensitizers (PS) in solution were obtained over a broad spectral range (460-880 nm) by open aperture Z-scan and two-photon fluorescence methods under either picosecond or femtosecond excitation, respectively. A maximum 2PA cross section of ca. 300 GM was observed for the photosensitizers containing a benzothiazole substituent in the fluorenyl 7-position. The electronic structures and 2PA properties of these PS were analyzed using a time-dependent density functional theory method, resulting in reasonably good agreement between experimental and theoretical data.
Original language | English (US) |
---|---|
Pages (from-to) | 4706-4711 |
Number of pages | 6 |
Journal | Journal of Physical Chemistry C |
Volume | 113 |
Issue number | 11 |
DOIs | |
State | Published - Mar 19 2009 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Energy
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films