User Profiling and Behavior Evaluation Based on Improved Logistics Algorithm

Xiaoping Xiong, Wenliang Wu, Ning Li, Deran Tu, Shuang Xu, Jie Zhang, Zhi Wei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

With the development of big data technologies and algorithms, the in-depth analysis of user data collected by user call center becomes possible. Traditional customer call center has notable shortcomings in the intelligent assessment and analysis of internal and external factors affecting customer behavior. If the impact degree and duration of user complaints cannot be accurately predicted, it will seriously hinder employee performance evaluation and enterprise development. In this paper, we proposed a novel framework to do the user profiling and predicted the user's complain probability. The experiments conducted on the 95598 call center users in Guangxi in the first quarter of 2018 show that the developed model has better distinguishing ability and accuracy than the traditional Logistics model in evaluating user behaviors. It can effectively predict the behavior of power users in advance, which is beneficial for power companies to avoid the risk of complaints, thus continuously and effectively improve user experiences, and has substantial economic and social benefits.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Networking, Sensing and Control, ICNSC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728168531
DOIs
StatePublished - Oct 30 2020
Externally publishedYes
Event2020 IEEE International Conference on Networking, Sensing and Control, ICNSC 2020 - Nanjing, China
Duration: Oct 30 2020Nov 2 2020

Publication series

Name2020 IEEE International Conference on Networking, Sensing and Control, ICNSC 2020

Conference

Conference2020 IEEE International Conference on Networking, Sensing and Control, ICNSC 2020
Country/TerritoryChina
CityNanjing
Period10/30/2011/2/20

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Networks and Communications
  • Statistics, Probability and Uncertainty
  • Control and Optimization
  • Sensory Systems

Keywords

  • behavior assessment
  • big data
  • improved Logistics algorithm
  • user profiling

Fingerprint

Dive into the research topics of 'User Profiling and Behavior Evaluation Based on Improved Logistics Algorithm'. Together they form a unique fingerprint.

Cite this