Using Convolutional Neural Networks to Support Insertion of New Concepts into SNOMED CT

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Many major medical ontologies go through a regular (bi-annual, monthly, etc.) release cycle. A new release will contain corrections to the previous release, as well as genuinely new concepts that are the result of either user requests or new developments in the domain. New concepts need to be placed at the correct place in the ontology hierarchy. Traditionally, this is done by an expert modeling a new concept and running a classifier algorithm. We propose an alternative approach that is based on providing only the name of a new concept and using a Convolutional Neural Network-based machine learning method. We first tested this approach within one version of SNOMED CT and achieved an average 88.5% precision and an F1 score of 0.793. In comparing the July 2017 release with the January 2018 release, limiting ourselves to predicting one out of two or more parents, our average F1 score was 0.701.

Original languageEnglish (US)
Pages (from-to)750-759
Number of pages10
JournalAMIA ... Annual Symposium proceedings. AMIA Symposium
Volume2018
StatePublished - Jan 1 2018

All Science Journal Classification (ASJC) codes

  • General Medicine

Fingerprint

Dive into the research topics of 'Using Convolutional Neural Networks to Support Insertion of New Concepts into SNOMED CT'. Together they form a unique fingerprint.

Cite this