@inproceedings{ff9fbeb24ca24b67acf3545b84e05b11,
title = "USV-AUV Collaboration Framework for Underwater Tasks under Extreme Sea Conditions",
abstract = "Autonomous underwater vehicles (AUVs) are valuable for ocean exploration due to their flexibility and ability to carry communication and detection units. Nevertheless, AUVs alone often face challenges in harsh and extreme sea conditions. This study introduces a unmanned surface vehicle (USV)-AUV collaboration framework, which includes high-precision multi-AUV positioning using USV path planning via Fisher information matrix optimization and reinforcement learning for multi-AUV cooperative tasks. Applied to a multi-AUV underwater data collection task scenario, extensive simulations validate the framework's feasibility and superior performance, highlighting exceptional coordination and robustness under extreme sea conditions. To accelerate relevant research in this field, we have made simulation code (demo version) available as open-source.",
keywords = "Autonomous underwater vehicle, Extreme sea conditions, Fisher information matrix, Reinforcement learning, Underwater tasks, Unmanned surface vehicle",
author = "Jingzehua Xu and Guanwen Xie and Xinqi Wang and Yimian Ding and Shuai Zhang",
note = "Publisher Copyright: {\textcopyright} 2025 IEEE.; 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025 ; Conference date: 06-04-2025 Through 11-04-2025",
year = "2025",
doi = "10.1109/ICASSP49660.2025.10888444",
language = "English (US)",
series = "ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
editor = "Rao, \{Bhaskar D\} and Isabel Trancoso and Gaurav Sharma and Mehta, \{Neelesh B.\}",
booktitle = "2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025 - Proceedings",
address = "United States",
}