Variation in the interface strength of silicon with surface engineered Ti3C2MXenes

Vidushi Sharma, Dibakar Datta

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Current advancements in battery technologies require electrodes to combine high-performance active materials such as Silicon (Si) with two-dimensional materials such as transition metal carbides (MXenes) for prolonged cycle stability and enhanced electrochemical performance. More so, it is the interface between these materials, which is the nexus for their applicatory success. Herein, the interface strength variations between amorphous Si and Ti3C2TxMXenes are determined as the MXene surface functional groups (Tx) are changed using first principles calculations. Si is interfaced with three Ti3C2MXene substrates having surface −OH, −OH and −O mixed, and −F functional groups. Density functional theory (DFT) results reveal that completely hydroxylated Ti3C2has the highest interface strength of 0.6 J m−2with amorphous Si. This interface strength value drops as the proportion of surface −O and −F groups increases. Additional analysis of electron redistribution and charge separation across the interface is provided for a complete understanding of underlying physico-chemical factors affecting the surface chemistry and resultant interface strength values. The presented comprehensive analysis of the interface aims to develop sophisticated MXene based electrodes by their targeted surface engineering.

Original languageEnglish (US)
Pages (from-to)5540-5550
Number of pages11
JournalPhysical Chemistry Chemical Physics
Volume23
Issue number9
DOIs
StatePublished - Mar 7 2021

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Variation in the interface strength of silicon with surface engineered Ti3C2MXenes'. Together they form a unique fingerprint.

Cite this