Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy

Matthias Gromeier, Michael C. Brown, Gao Zhang, Xiang Lin, Yeqing Chen, Zhi Wei, Nike Beaubier, Hai Yan, Yiping He, Annick Desjardins, James E. Herndon, Frederick S. Varn, Roel G. Verhaak, Junfei Zhao, Dani P. Bolognesi, Allan H. Friedman, Henry S. Friedman, Frances McSherry, Andrea M. Muscat, Eric S. LippSmita K. Nair, Mustafa Khasraw, Katherine B. Peters, Dina Randazzo, John H. Sampson, Roger E. McLendon, Darell D. Bigner, David M. Ashley

Research output: Contribution to journalArticlepeer-review

79 Scopus citations

Abstract

Several immunotherapy clinical trials in recurrent glioblastoma have reported long-term survival benefits in 10–20% of patients. Here we perform genomic analysis of tumor tissue from recurrent WHO grade IV glioblastoma patients acquired prior to immunotherapy intervention. We report that very low tumor mutation burden is associated with longer survival after recombinant polio virotherapy or after immune checkpoint blockade in recurrent glioblastoma patients. A relationship between tumor mutation burden and survival is not observed in cohorts of immunotherapy naïve newly diagnosed or recurrent glioblastoma patients. Transcriptomic analyses reveal an inverse relationship between tumor mutation burden and enrichment of inflammatory gene signatures in cohorts of recurrent, but not newly diagnosed glioblastoma tumors, implying that a relationship between tumor mutation burden and tumor-intrinsic inflammation evolves upon recurrence.

Original languageEnglish (US)
Article number352
JournalNature communications
Volume12
Issue number1
DOIs
StatePublished - Dec 1 2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy'. Together they form a unique fingerprint.

Cite this