Voxel-based, parallel simulation of light in skin tissue for the reconstruction of subsurface skin lesion volumes

Brian D'Alessandro, Atam P. Dhawan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Early detection and diagnosis of skin cancer is essential to treating the malignancy and preventing death. Subsurface features and depth information are critical in evaluating a skin lesion for this early malignancy screening. We present a novel voxel-based Monte Carlo simulation of light propagation in skin tissue which runs in a highly parallel environment on desktop graphics processors, resulting in an extremely fast simulation of millions of photons in less than one second. We then use this model in a genetic algorithm for the inverse 3D volume reconstruction of a skin lesion, given a set of multispectral images obtained using non-invasive transillumination imaging. Our method demonstrates improved accuracy at a superior resolution to existing methods.

Original languageEnglish (US)
Title of host publication33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
Pages8448-8451
Number of pages4
DOIs
StatePublished - Dec 26 2011
Event33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011 - Boston, MA, United States
Duration: Aug 30 2011Sep 3 2011

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
CountryUnited States
CityBoston, MA
Period8/30/119/3/11

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Voxel-based, parallel simulation of light in skin tissue for the reconstruction of subsurface skin lesion volumes'. Together they form a unique fingerprint.

Cite this