TY - GEN
T1 - Wireless network traffic disaggregation using Bayesian nonparametric techniques
AU - Ford, Gabriel
AU - Cargan, Rebecca
AU - Ahmed, Ali
AU - Rigney, Kevin
AU - Berry, Christopher
AU - Bucci, Donald
AU - Kam, Moshe
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/5/21
Y1 - 2018/5/21
N2 - We present a machine learning spectrum awareness framework capable of characterizing and inferring the application layer protocol states of multiple interleaved wireless network traffic flows using only externally observable energy detector features. The framework is intended to inform intelligent dynamic spectrum access (DSA) strategies in a cognitive radio environment. This extends an approach we developed previously for single isolated traffic flows, which applied a Bayesian non-parametric technique to construct hidden Markov model (HMM) representations of specific protocols. The learned HMM models, with hidden states closely corresponding to actual protocol states, were used for protocol classification and state recognition given a stream of energy detector observables from an isolated traffic flow. In this work, various single protocol HMMs are combined into a factorial hidden Markov model (FHMM) representing multiple heterogeneous interleaved flows. Using the FHMM to infer the states of the interleaved flows directly from observations of the aggregate traffic, we avoid having to deinterleave the transmissions of the component flows, a particularly difficult task in cognitive radio environments with agile emitters. We demonstrate this framework on an emulated network scenario with multiple simultaneous flows carrying different application layer traffic types.
AB - We present a machine learning spectrum awareness framework capable of characterizing and inferring the application layer protocol states of multiple interleaved wireless network traffic flows using only externally observable energy detector features. The framework is intended to inform intelligent dynamic spectrum access (DSA) strategies in a cognitive radio environment. This extends an approach we developed previously for single isolated traffic flows, which applied a Bayesian non-parametric technique to construct hidden Markov model (HMM) representations of specific protocols. The learned HMM models, with hidden states closely corresponding to actual protocol states, were used for protocol classification and state recognition given a stream of energy detector observables from an isolated traffic flow. In this work, various single protocol HMMs are combined into a factorial hidden Markov model (FHMM) representing multiple heterogeneous interleaved flows. Using the FHMM to infer the states of the interleaved flows directly from observations of the aggregate traffic, we avoid having to deinterleave the transmissions of the component flows, a particularly difficult task in cognitive radio environments with agile emitters. We demonstrate this framework on an emulated network scenario with multiple simultaneous flows carrying different application layer traffic types.
UR - http://www.scopus.com/inward/record.url?scp=85048530680&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048530680&partnerID=8YFLogxK
U2 - 10.1109/CISS.2018.8362251
DO - 10.1109/CISS.2018.8362251
M3 - Conference contribution
AN - SCOPUS:85048530680
T3 - 2018 52nd Annual Conference on Information Sciences and Systems, CISS 2018
SP - 1
EP - 6
BT - 2018 52nd Annual Conference on Information Sciences and Systems, CISS 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 52nd Annual Conference on Information Sciences and Systems, CISS 2018
Y2 - 21 March 2018 through 23 March 2018
ER -